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ABSTRACT

The 1995 Census Test evaluated two fundamental changes in decennial census design: sampling for
Nonresponse Followup (NRFU) and integrated coverage measurement (ICM).  Sampling of
nonresponding households after the mail phase of the census will reduce the workload and cost of
the census.  Housing units not returning their census forms by mail are classified by the Postal
Service as occupied or vacant; a sample of occupied nonresponding households is then selected and
used to estimate for the universe of nonresponding households.  ICM attempts to mitigate differential
undercoverage experienced in past censuses by incorporating estimates of omitted persons directly
into the final census products.  A subsample will be drawn to estimate the residual undercoverage
of the census, and estimates of the undercoverage will be integrated into the final count.

Although the use of sampling for characteristics has been a feature of modern censuses, the 2000
Census will be the first to use sampling to determine the number of persons.  Consequently,
estimation of variance for census data products has become a matter of increased importance.  The
paper will summarize the methodology implemented for the 1995 Census Test, aspects of which
were previously presented (Town and Fay 1995).  The paper elaborates features of the application,
such as adaptations to the analysis of experimental panels assessing the effect of block vs. unit
sampling in NRFU estimation.  The paper then reports the findings from the production variance
estimation for the 1995 Census Test.  These findings will include comparison of estimated variances
with the target variances assumed in the initial design.  The test will provide important evidence on
the relative levels of variance for a "Census Plus" strategy in the ICM vs. the dual-system approach
incorporated in a number of previous attempts to measure census undercount.  Finally, the analysis
identifies features of sample design likely to affect the quality of variance estimation in 2000.
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1.  INTRODUCTION

The Census Bureau recently released the proposed design for the 2000 census (U.S. Bureau of the
Census 1996a, 1996b).  The 2000 census, like censuses for the past several decades, will contact
respondents initially through the mail.  An innovation for 2000, however, will be additional mail
contact with reminders and a replacement questionnaire for those not responding initially, in order
to increase mail response.  Following practice in previous censuses, there will be a subsequent
attempt to contact most nonresponding households in person.  After areas reach a proposed level of
90 percent response, the remaining households in 2000 will be revisited on a sample basis to
complete the nonresponse follow up (NRFU) phase of the census.  The term "truncated census" has
been applied to the four-step process of 1) mailing census questionnaires; 2) attempting to follow



up most or all nonresponding households; 3) sampling the remaining nonrespondents for intense
completion efforts; and 4) measuring and correcting census coverage errors through Integrated
Coverage Measurement (ICM).

A sample of blocks will be selected for ICM.  Both mail and nonmail households in the ICM sample
will be eligible for a detailed interview to determine omissions and erroneous inclusions of persons
from the census.  Within sampled blocks, ICM interviewers will also check for omissions of housing
units from the census and any missed persons living in them.  The results from the ICM are to be
integrated into the census results, so that all statutory obligations for the 2000 census will be met
with census estimates corrected for estimated omissions, providing a "one-number census."  

The 1995 Census Test was designed to test major features of this new approach to taking the census.
The test was conducted in Oakland, California, Paterson, New Jersey, and six parishes (county
equivalents) in Northwest Louisiana.  After mail response, samples of nonrespondents were selected
without the intermediate step of attempting to contact all nonresponding households as in the
truncated census.  (This approach has gained the  designation "direct sampling" at the Census
Bureau, referring to 1) mailing census questionnaires; 2) sampling the remaining nonrespondents for
intense completion efforts; and 3) measuring and correcting census coverage errors through ICM.)
U.S. Bureau of the Census (1996c) provides an overview of census operations in the test.  ICM
operations and adjustments were employed in all three sites.

Previously (Town and Fay 1995), we described general features of the sample design for the 1995
Census Test.  We examined alternative approaches to estimating the variance of site-level estimates
and reported results from a Monte Carlo study using data from the 1990 census for Paterson and the
1990 Post-Enumeration Survey (PES).  The results of the study favored a jackknife estimation
approach, modified to accommodate the design.    Data from the 1995 test subsequently have become
available.  Section 2 reviews this issue, summarizing the sample design and noting additional
features as necessary to describe the  methodology for the variance calculation for the site-level
estimates.  Section 3 reports the findings from the test and further analyzes the sources of variance
in the site-level variance.

In addition to the site-level estimates, this paper begins to address variance estimation at lower
levels, such as blocks, tracts, and the other units of census aggregation.  Here, the estimation issues
are complex.  In this paper, we will focus on only one such issue.  One of two experimental panels
in the Oakland site employed unit sampling for NRFU.  Specifically, in the 1995 test, each block
with any nonresponding units was allocated at least one sample hit.  (We will use the term unit
sample to refer to any nonclustered sample of the nonresponding addresses.)  The other panel in
Oakland and the Paterson and Northwest Louisiana sites were sampled through block sampling.  We
focus our attention on variance estimation for the unit sample in Oakland, because it now appears
a more likely precursor for NRFU sampling and estimation in the 2000 census than the block
samples implemented in the majority of the test site.

The concluding section discusses implications and limitations of these findings, and directions for
further research.

This Proceedings version largely represents the conference version, but the text will note instances
where new results have been included.  We have attempted not to expand the scope of the paper but
only to supplement the evidence available at the time of presentation.



2.  VARIANCE METHODOLOGY FOR SITE-LEVEL ESTIMATES

2.1 Sample Design and Estimation

Our previous paper (Town and Fay 1995) describes general features of the sample design for the
tests, citing internal documentation for additional information.  We will first furnish here a brief
summary of important aspects of the design.

In all three sites two samples were drawn:

1)  An ICM sample of block clusters was selected.  In each sampled block cluster, all mail
nonrespondents, except for identified vacants, were followed up through standard NRFU operations.
Subsequently, both mail and nonmail households became eligible for ICM interview.  In Louisiana,
only the "Census Plus" (C+) strategy was implemented, and adjustment factors were built into the
estimates from the test census.  In Oakland and Paterson, data were collected from ICM sample
households enabling the calculation of both "Census Plus" and dual-system estimates (DSE).  The
latter methodology had been employed in a number of previous survey evaluations of census
undercoverage, including the 1990 Post Enumeration Survey (PES).  In Oakland and Paterson,
adjustment factors based on DSE provided the final site-level estimates from the test.

2)  From the remaining universe, a NRFU sample of nonresponding addresses was drawn.  In
Paterson and Louisiana, a block sample was drawn after stratifying the non-ICM blocks by
characteristics including the level of nonresponse.  Oakland was divided into two panels: one
receiving the block sample design used in Paterson and Louisiana; the other, a unit sample drawing
a systematic sample of housing units within blocks.  Except for the manner of sample selection, the
intention was to administer the NRFU operations in the same manner as in ICM sample block
clusters, but without subsequent ICM operations.

The ICM design was consequently quite clustered, since the target size of a block cluster was 30
housing units.  The number of sampled block clusters was approximately 150 in Oakland, 100 in
Paterson, and 75 in Northwest Louisiana.  The earlier paper (Town and Fay 1995) includes details
of the stratification and sample selection.  Figure 1 attempts to clarify the relationship between the
ICM and NRFU samples.

The design of the test reflected an effort to obtain critically important evidence on the effect of
major alternatives for 2000.  A primary objective was to test C+ as an estimation methodology.  This
approach attempts to measure persons omitted from the census through a second interview.  One
advantage of C+ is its reliance on standard survey estimation.

Although it was anticipated that C+ estimates might fall slightly below DSE, differences between
the DSE and C+ outcomes for the 1995 test were larger than expected.  In short, results from DSE
were within the realm of past experience, providing an indication of undercounts of minority
populations.  Repeating past findings, DSE detected only modest difference in the coverage of adult
men and women, whereas demographic analysis at the national level has generally been held to
provide strong evidence of such a differential (Robinson et. al. 1993) in past decennial censuses.
The results of C+, however, were so disappointing as to suggest initial failure.  Possible
improvements in the methodology for C+ will be tested in 1996.



Fig. 1 .  Relationship between ICM and NRFU sampling.  ICM block clusters were first selected, prior
to the census mailout.  The sample ICM clusters consequently included some blocks with complete
mail response, for which the number of nonresponding addresses, NRADR, was 0.  After mail
response, blocks with NRADR > 0 constituted the universe from which the NRFU sample was selected,
using NRADR as one of the variables affecting stratification.

The Oakland site provided a comparison of block vs. unit sampling for nonresponse.  There is a
technical consensus with the Census Bureau that current ICM methodology virtually requires that
the ICM sample blocks be completely interviewed for NRFU in order to permit later matching of
ICM respondents.  Otherwise, ICM respondents not matching to the census could not be easily
distinguished from the generally larger number of mail nonrespondents.

With complete nonresponse followup required for ICM sample blocks, the dilemma is then to choose
between:

a) block sampling for the rest of the NRFU sample, in order to insure consistency between
the NRFU estimates and the adjustment factors derived from the ICM sample; vs.,
b) unit sampling of nonresponding housing units, which previous studies have shown has a
considerably lower variance.

The findings from the 1995 test indicated no consistent difference in the level of the estimates
between the two panels (Treat 1996).  Indeed, the overall estimates of population total were
extremely close between the two panels.  Consequently, a technical recommendation to employ unit
sampling for nonresponse in 2000 is now under serious review, although the eventual sample design
may vary considerably from the version implemented in Oakland.

Estimation for the 1995 test might be described as a "top-down" approach.  Traditional survey
estimators, combining NRFU results with ICM findings, were used at the site level.  To produce
detailed data at the block, block group and other such levels, imputation was employed.  For the unit



sample in Oakland, the imputation for followup nonresponse amounted to a relatively simple
duplication of sample households.  Since the sampling interval was approximately 1 in 3.5, each
sample household was duplicated 2 or 3 times.  A more complex procedure was required for block
sampling.  To resolve differences between the site-level estimates and estimates formed by adding
up the observed and imputed data, the imputation was followed by procedures that either augmented
or reduced the imputations to meet the overall targets defined by the site-level post-NRFU estimates.

After imputation and imposition of site-level constraints, then, the final post-NRFU estimates were
obtained by adding up, without weights, the number of persons on the imputed file.   ICM adjustment
factors were then applied at the block level and the resulting fractional people distributed according
to a controlled rounding algorithm within each block.  Because the imputations were constrained to
sum to the survey estimates at the site level, however, the discussion of variance estimation for the
site-level estimates may ignore the details of the imputation methodology.

Site-level estimation was performed in two steps.   The first employed sample data from NRFU,
including the data from nonresponse followup from ICM sample blocks, to produce a post-NRFU
estimate of the population.  The second adjusted the post-NRFU estimate by the ICM findings,
producing DSE estimates in the two urban sites and C+ estimates in all three.

The post-NRFU  site-level estimate gave unit weight to all counts from self-response (mail returns,
Be Counted forms, Reverse Computer-Assisted Telephone Interviews) and a survey weight to
estimates from the NRFU sample, including followup cases in ICM blocks, based on the
unconditional probabilities of selection into the NRFU and ICM samples.  In each site,
poststratification and ratio estimation were employed to reflect the total number of nonresponding
addresses.  In Oakland, ratio estimation proceeded separately for the two experimental panels,
stratifying the unit-sampling panel by number of nonresponding addresses in the block.  In
Louisiana, the ratio estimation was elaborated into a two-way rake (iterative proportional adjustment)
in order to control to site-level totals of nonresponding addresses by poststrata and to broad
groupings of poststrata by parish, for purposes of parish-level estimation.

Following the general design of previous censuses, DSE employed results from two overlapping
samples of households within ICM sample blocks: a P-sample to estimate omitted persons and an
E-sample to estimate erroneous enumerations.  C+ produced a resolved roster (R-sample) for each
household, which was created after reconciling the initial P-sample roster with the respondent to
resolve differences from the census enumerations.
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2.2  Reflecting the Relationship Between ICM and NRFU Sampling in Variance Estimation

The methodology for site-level variance involved two relatively novel methodological aspects, which
were previously discussed in Town and Fay (1995) and Fay and Train (1995).  We summarize these
two aspects in this section and in section 2.3.

To review, the ICM sample, , with sampling fraction ,  was selected first and received both the
NRFU and ICM treatments.  The remaining blocks were restratified, using information unavailable
when the ICM sample was selected, and sampled into ,  with sampling fraction ,  for additional
NRFU treatment.  Post-NRFU estimates, X , used both samples with weights based on unconditional
probabilities of selection.  The problem is similar but not identical to double sampling.  Variances
for post-NRFU estimates, X , ICM estimates, Y , and any covariances between them are required.
Following the development in Town and Fay (1995), we first discuss the situation of stratified
simple random sampling.

Variances for estimates based only on the ICM sample, , are straightforward.  We employed a
stratified jackknife incorporating the finite population corrections for variances for estimates, Y ,
based on  .  Empirical evidence presented in Town and Fay (1995) favored this choice over half-
sample replication and another replication method to be described later in this section.

We summarize the derivation in Town and Fay (1995) of a variance estimator for characteristics
based on both  and  .  Let U -   denote the non-ICM blocks, which is the universe from which
the stratified NRFU sample, , is selected.  Under standard assumptions, two unbiased estimates
of a finite population total are possible.  One uses the data from  only,

while the second conditions on  ,

The data from the two samples are combined so that each sample  is given weight , where

that is,

Figure 2 illustrates this decomposition.
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Fig. 2 .  Illustration of the decomposition of the NRFU estimator into  based on the ICM only and
using the ICM sample as self-representing and employing the NRFU sample to estimate the balance

of the universe.  The weights are illustrative but were among the combinations appearing in Oakland.

We have

since

Thus, a jackknife estimate of variance may be formed from

where  represents the usual jackknife variance estimate for  , the portion of the estimated
total  based on , and where, analogously,   represents the usual jackknife variance
estimate for  , the portion of the estimated total  based on .  In other words, both   and  
are based on applying the unconditional weight, , to the sample data from  and ,
respectively.

Eq. (1) was implemented through replication, using the program VPLX (Fay 1995a).  The variance
of each characteristic, Y , was estimated through 
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where  are coefficients determined by the sample design and    are estimates for replicate
samples r .  In turn, the replicate estimates were defined by  replicate weights identifying how each
observation should contribute to the replicate estimate

One set of replicate weights {  }  is defined for post-NRFU estimation along the lines of eq. (1).
Mail response cases and other observations receiving unit weight in the census post-NRFU received
replicate weights of 1.  A second  set of replicate weights {  } for each observation in 
provided the basis for estimates of variance for ICM characteristics, Y , for an appropriate choice of

.

The replicates were set up to maintain the covariance between the two samples in the following
manner:

1) Replicate weights corresponding to the stratified jackknife were set up first for .
2) Replicates were then set up for   , to follow the replicates for .  Cases in  received
their full sample weight over the range of replicates set up for .  Similarly, cases in 
were given their full sample weight over the range of replicates set up for .

Over the range of replicates corresponding to , {  } and {  } were constructed to give the
same values of   .  Thus, eq. (2) could be used for all site-level characteristics, including those,
such as the DSE, combining estimates from the two samples.

2.3  Variance Estimation for Systematic Sampling

Although the motivation for the variance estimator is in terms of stratified sampling without
replacement, both  and  were drawn through systematic sampling with equal probabilities of
selection within strata.  In Town and Fay (1995) samples drawn from census results in Paterson
according to the 1995 sample design indicated no clear pattern of bias in the variance estimator based
on the jackknife, and some advantage in performance over another variance estimator designed
specifically for systematic sampling (Fay and Train 1995).  We next describe this variance estimator,
which we used for the unit sample panel in Oakland.

Among the estimators that Wolter (1985, ch. 7) studied, two estimators, both based on squared
differences between neighboring sample cases, did relatively well as general solutions.  Expressed
as estimators of the variance of the estimated population total

they were



v2 ' (1& f )
n

2 (n&1) j
n

i ' 2
( wi yi & wi&1 yi&1 )2

v3 ' (1& f ) j
n/2

i ' 1
( w2i y2i & w2i&1 y2i&1 )2

v2m ' 1/2 (1& f ) ( wn yn& w1 y1 ) 2
% j

n

i ' 2
( wi yi & wi&1 yi&1 )2

f ir ' 1 % (2)&3/2 ai%1, r & (2)&3/2 ai%2, r

fnr ' 1 % (2)&3/2 an%1, r & (2)&3/2 a2, r
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where , i = 1,..., n, represents a systematic sample from an ordered population, and f denotes the
sampling fraction n/N.  Estimator  assumes that n is an even number.  Both estimators employ
squared differences of neighboring observations to estimate variation;  by comparing n/2 distinct
pairs, while  compares each sample observation, except for j = 1 and j = n, to two others.

Following the development in Fay and Train (1995), consider instead the following modification to
:

This estimator adds a comparison of the first and last sample case.  In applications where the order
of the sort is highly informative and and  are likely to be highly dissimilar, this step
cannot be taken lightly.  It is used here, however, to establish a link between  and the successive
difference replication method.

Plackett and Burman (1946) provided a method of constructing orthogonal matrices, A =  { } of
order 4k such that , with each  = 1 or -1, for most values of k up to 100 or more.
These methods are implemented in VPLX.  In turn, most of the matrices constructed in this manner
have a first row consisting entirely of 1's.  Let 4k, at least n+2, be the order of such a matrix,  A.
Then, for each replicate r = 1,...4k, assign to each observation  the replicate factor

for i < n, and 

The replicate factors are related to the replicate weights through  where  represents
the original weight.  In turn these replicate factors define a set of replicate totals
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Fay and Train (1995) show that the resulting replicate variance estimate,

is identical to .  This is an interim result, however, since the purpose is to motivate the successive
difference replication variance estimator,  , obtained by defining

for all i.   Consequently,  and  no longer share a row of the Hadamard matrix, and each end
point is compared directly to only one other observation rather than two.

Strictly speaking, the variance estimator is not unbiased for simple random samples, but Monte Carlo
studies suggest a small bias, less than 1 percent, even for relatively small n, when estimating
variances for ratio estimates.  (For simple unbiased estimates, the variance estimator may have an
upward bias resulting from the treatment of the end points.)  Applied to the highly clustered Paterson
data, Town and Fay (1995) found this estimator did not preform as well as the jackknife.
Consequently, this estimator was used only for NRFU estimation from the unit sample in Oakland.
Here, we reasoned that the application was closer to other empirical tests that have favored  , 
such as the application to the Current Population Survey.

2.4  Limitations of the Variance Estimates

The variance strategy that we have described closely respects the sample design.  We noted in
passing, however, that we selected a jackknife procedure based on stratified simple random sampling
without replacement, based on favorable empirical performance reported in Town and Fay (1995).
Thus, the variance estimates do not presume any advantage to the particular form of systematic
sampling employed to draw the samples for the ICM and NRFU block samples.

We did not attempt in this research to reflect additional variance due to missing data for the
population count.  In particular, the ICM estimates included imputations for missing data.  One
source was particularly notable: a followup interview for specific classes of ICM cases, such as
whole households not matching the census, was attempted only in one of the two panels of the design
and the followup results imputed to the other panel; these imputations were employed in the DSE
estimates.  Thus, the variance results we report for the 1995 test are likely to be underestimates.

3.  VARIANCE RESULTS FOR THE 1995 TEST

Table 1 presents the primary site-level variance results.

Table 1.  Site-Level Preliminary Estimates and Estimated Standard Errors, 1995 Test
 (Excluding the Group Quarters Population)



Post-NRFU C+ DSE

Oakland 332,734 334,482 361,538
(1,264) (5,681) (6,738)

Paterson 127,950 132,337 145,504
(1,477) (2,164) (2,746)

Northwest LA 114,163 116,156
(808) (1,695)

Note:  The population estimates shown are not official.  They omit the group quarters population, which
was excluded from NRFU sampling and ICM estimation.  In addition, they may disagree by a few
persons with final census results for the sites, excluding group quarters, because of the effect of
rounding in the computations.  No DSE estimates are available for the LA site.

At the site level, the standard errors for either the C+ or DSE estimates are considerably larger for
the post-NRFU estimates, indicating that the ICM component of the estimation is the dominant
contributor to variance at the site level.

The standard errors for the DSE are somewhat larger than those for C+.  Since the DSE estimates
are so much larger, however, the variance advantage of C+ is, at this point, inconsequential.
Variance comparisons between the two ICM methodologies will only be of interest when there is
much less of a difference in the level of the estimates.  It is unclear whether C+ would continue to
show a variance advantage over DSE if it produced comparable population estimates.

Table 2.  Site and Parish Level Estimates for Northwest Louisiana 

Post-NRFU C+

Northwest LA site 114,163 116,156
(808) (1,695)

Bienville Parish 15,078 15,380
(369) (424)

Desoto Parish 24,102 24,546
(345) (516)

Jackson Parish 15,004 15,218
(358) (398)

Natchitoches Parish 34,788 35,417
(464) (641)

Red River Parish 9,259 9,424
(195) (244)

Winn Parish 15,932 16,171
(326) (385)



X̂2

Note:  The population estimates shown are not official.  They omit the group quarters population, which
was excluded from NRFU sampling and ICM estimation.  In addition, they may disagree by a few
persons with final census results for the sites, excluding group quarters, because of the effect of
rounding in the computations.

Table 2 compares the site and parish level results for Louisiana.  Because the ICM adjustments were
computed at the site level and then applied to each parish separately, the relative contributions of
NRFU and ICM estimation shift at the parish level, where now the NRFU contribution is a
significant or primary source of the estimated total variance.  It should be noted, however, that the
estimated variances for the ICM adjustments do not take into account the effect of differences
between the site level rates of undercoverage, which formed the basis for the ICM adjustments, and
the underlying real rates at the parish level.  The assumption that adjustments computed at higher
geographic levels may be applied to lower ones has been termed the synthetic assumption in the
literature on the undercount.  Given that assumption, the variance estimates show that the NRFU
sampling contributes half or more of the overall variance at the parish level.

As previously noted, Treat (1996) reported insignificant differences between the estimates from the
block and unit panels in Oakland.  Table 3 shows separate estimates by panel and estimated standard
errors.  As described in Section 2.2, the production estimate employed both the ICM and NRFU
sampling results.  The alternative estimator, , treats the ICM sample as self-representing and
weights only the NRFU sample.  For this second approach, the ratio of estimated standard errors is
about 2.6, which represents a ratio of variances of about 6.9.

Table 3.  Estimated Persons and Standard Errors, for Oakland by Panel

Panel 1: Block Panel 2: Unit

Production estimates 160,894 160,878
(1,154) (644)

NRFU sample only 160,728 161,388
(1,246) (476)

Note:  The population estimates shown are not official.  They omit the group quarters population, which
was excluded from NRFU sampling and ICM estimation.  In addition, they may disagree by a few
persons with final census results for the sites, excluding group quarters, because of the effect of
rounding in the computations.  Some blocks were assigned to another study and excluded from the
analysis of the panels.

Subsequent to the conference presentation, we pursued some additional research to verify these
findings and to account for the large design effect of block sampling in Oakland.  The findings are
included in the remainder of this section.

Although the Postal Service was seen as the primary identifier of vacant housing units, the majority
of vacants and deleted units were identified during NRFU.  Consequently, the estimation task of
NRFU may be described as estimating: 1) the number of occupied units among the nonresponding
addresses, and 2) the average number of persons per occupied unit.  In other words:

# NRFU persons = (# occ hu) × (# persons)/(occ hu)



Table 4 shows that this decomposition helps to clarify the sources of variance in the estimate of total
persons.  The coefficient of variation of each component is shown separately.  For block sampling,
estimating the number of occupied units is almost as large a challenge as estimating the average
number of persons, whereas this is less a concern for unit sampling.  In other words, the design effect
for estimating the occupancy rate is particularly high for block sampling, with a ratio of standard
errors of about 3.4, compared to a ratio of about 2.4 for estimating the average number of persons.

The table next shows the resulting coefficient of variation if the two components were statistically
independent, followed by the actual estimated coefficients of variation for estimated persons.  In both
cases, the actual is barely greater than the result under independence, showing that the total variance
can be usefully decomposed into the problems of estimating occupied units and the average number
of persons per occupied unit.

Table 4.  Estimated Percent Coefficients of Variation for the Occupancy Rate and Average
Number of Persons per Occupied Unit for the Oakland NRFU Universe

Panel 1: Block Panel 2: Unit

# occ hu 0.51 0.15

# persons/occ hu 0.57 0.24

Under independence 0.77 0.28

Observed for total persons 0.78 0.29

Note:  The table reports the c.v.'s of the separate components, the resulting c.v.'s under independence,
and the estimated c.v.'s for total persons.

Figure 3 employs this approximate decompostion to study the effect of cluster size.
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Fig. 3.  Ratios of estimated standard errors (deft) for block vs. unit sampling in Oakland, using  the
NRFU sample only,for blocks grouped by NRADR, the number nonresponding addresses.  Because
blocks with one nonresponding address were always selected in the unit sample, the results for the 0-2
interval are not meaningful.  Otherwise, the comparison shows slowly rising deft in the range of 3-99
nonresponding addresses, but a sharp increase at the upper end for NRADR > 100.  The results for
the upper end could be sensitive to the outcome in only a few blocks.

The number of nonresponding addresses varied widely by block in Oakland.  Although the
production estimation did not formally poststratify by the number of nonresponding addresses, a
calculation of this sort helps to illustrate the variation in the design effects by block.  As noted in the
note to the figure, results for 0-2 should be discounted.  The results suggest that the Oakland findings
may be particularly affected by high design effects estimated at the upper end.  Even without the
extreme findings at the upper end, however, deft's approaching or above 2 for blocks in the 20-39
and 40-99 ranges indicate that the variance advantage of unit sampling is considerable and persistent.

4.  VARIANCE ESTIMATION FOR UNIT SAMPLING

Fay (1995b) described a variance estimator for nearest neighbor imputation appropriate for a simple
random sample of size n from a finite population of size N without replacement.  We first describe
this general form for estimating the variance of the sample mean and then discuss its application to
imputation for unit sampling.

For each nonrespondent k, let nn1(k) be the closest responding observation.  Closeness may be based
on observed characteristics but not the value of the unobserved y.  For example, we may use the sort
order of census id's within blocks and address range areas (ARA's).  We then impute the missing
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n ȳs & y. k if k 0 Anr
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%

n& 1
n

n
N jk0 s
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value from the nearest neighbor.  In order to obtain a variance estimate, let  nn2(k) be the second
nearest neighbor; in other words, the observation that would have been used for imputation if nn1(k)
were deleted from the sample.  For each respondent k, let  be the set of nonrespondents
for which k is the closest responding observation.  Similarly, define   to be the set for
which k is the second nearest neighbor.  Finally, for each respondent pair k, kN  r, let 
be the set of nonrespondents for which k and kN are the 1st and 2nd nearest neighbors, respectively.
Like the estimator proposed by Rao and Shao (1992), the variance estimator begins by modifying
the usual jackknife replicates.  Define adjusted replicate values

where  and  are the sets of respondents and nonrespondents, respectively.  Define a second
set of adjusted replicate values

The proposed variance estimator is:

The first of the four major terms on the right-hand side of (5) approximates the effect of each k  
by substituting a second nearest neighbor in its place for each case for which k  provided an
imputation.  The second major term compensates for the effect of the finite population correction
in the first term, to capture the full effect of each  k   on the imputed values.  The sum of the first
and second terms overestimates some variances and covariances; the other two terms correct these
effects.  The third term corrects estimated covariances between cases with missing data sharing the
same 1st and 2nd nearest neighbors.  An additional correction to the estimated variance for each
imputed case is incorporated into the last term, although the term also estimates the variance in
predicting missing y's in the finite population.

Estimator (5) relies on model assumptions:
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Note that (6) does not assert a specific functional relationship between the x's and the y's or their
variance.  Because matching is frequently imperfect, model (6) must be regarded as an idealization.

In application to census imputation for NRFU, the first term of (5) drops out, and the role of n
becomes indeterminate.  Instead, we re-express (4) and (5) in terms of estimates of total

In other words, for each donor, eq. (7) creates a replicate estimate substituting second nearest
neighbors.

The adapted form of (5) is:

In spite of its complex appearance, eq. (8) describes an estimator easily computed through replicate
weights.  In application to the census, the replicate weights would take the simple form of 1's and
0's.

Inspection of (5) or (8) reveals that these variance estimators derive some inspiration from the
estimator of Rao and Shao (1992) for the hot deck, but there are important differences.  The Rao and
Shao estimator was based on hot deck cells with appreciable numbers of donor cases, but no such
restriction is place here.  Rao and Shao also required that imputations be selected from the hot deck
with replacement, and this requirement added considerable robustness against failure of model
assumptions.  The assumptions of eq. (6) can be regarded as a nonparametric model of closeness.
It is possible to create populations for which the 1st nearest neighbor is much closer to the true value
than the 2nd, and for these populations the variance estimator tends to have a significant upward
bias.  On the other hand, the matching rules do not have to reflect an additional random selection
from a larger collection of donors, unlike the Rao-Shao estimator.

We constructed an empirical test of the variance estimator based on the same census population for
Paterson as in Town and Fay (1995).  We extracted mail nonresponse addresses from the 1990
census, including delete cases, sorted by  ARA (similar to census tracts), block, and census id.  There
were 33 ARA's in this population, with 1033 blocks containing one or more nonresponding
addresses.  We did not fully replicate the details of the Oakland sampling; instead we considered
systematic sampling in each ARA, with independent starts in each.  We used intervals of 3, 5, 7, 9,
and 11, defining nearest neighbor simply by position in the sort order.  Imputation was constrained
to remain within ARA's, but not blocks.  Two forms of Monte Carlo were performed.  In the first,
each of the possible systematic samples in each ARA was evaluated separately (for example, 3
possible samples for a sampling interval of 3, etc.) and summed to a site-level result.  The first



allowed a rapid evaluation of the bias.  The second actually drew full samples in order to measure
the coefficient of variation of the site-level variance estimate, and was based on a larger sample.

Table 5.  Results of a Small Monte Carlo Study to Evaluate the Performance of the Nearest
Neighbor Imputation Variance Estimate for Systematic Sampling and Imputation

Sampling interval Bias CV

3 12.5 22

5 -2.4

7 18.6

9 1.2

11 17.5 31

The results in this table, although not perfect, show this approach to be a strong contender.  Its
advantages are the simplicity and flexibility of estimation that the nearest neighbor imputation
allows, the production of a file (before ICM results are considered) that looks like a complete count
file, and the ability to compute adequate measures of precision.

Fig. 4-6 provide summaries for the 33 Address Range Areas (ARA's).  ARA's in Paterson essentially
correspond to census tracts, representing groupings of blocks.  Fig. 4 shows that the estimated
variance increases quite predictably with the size of the estimate in the ARA.  Fig. 5 shows that the
coefficients of variation of the estimates are relatively acceptable at the ARA level, suggesting the
possibility of possibly publishing direct variance estimates at this level, probably in conjunction with
variance generalization.  Fig. 6 shows that the actual variance, based on only 3 possible samples,
cannot be predicted with precision by this approach.
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Fig. 4.   Average variance estimate for each ARA compared to the total number of persons in the
followup universe, when SI=3.  A least squares line is shown.  The average variance estimate exhibits
quite stable behavior as a function of the followup population.

Fig. 5.   CV of the variance estimator over sampling for each ARA, compared to the total number of
persons in the followup universe.  Because there are only 3 possible samples in each ARA when SI=3,
the distribution of CV's is scattered, even for ARA's with large followup populations. 
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Fig. 6.   Actual variance by ARA compared to the average variance estimate, when SI=3.  A least
squares line, with slope .875, is shown.  Because the actual variances are based on only 2 degrees of
freedom in each ARA, there is wide variation about the regression line.

Subsequent to the conference, additional computations were performed to suplement these findings.
Additional populations were defined by randomly reducing the universe by 10 percent, roughly
equivalent to the effect of  a modest increase in response. 

Fig. 7.   Actual variance by ARA compared to the average variance estimate, when SI=3, averaged over
a series of populations based on randomly deleting 10%.  A least squares line, with slope .966, is
shown. 



In general, this approach introduces many more possible samples than the few provided with
systematic sampling.  In other words, an interpretation is that the actual variance of systematic
sampling, based on few possible samples, is intrinsically difficult to predict, but the variance
estimator does successfully indicate the average variance for a set of similar populations formed by
random deletion.

5.  CONCLUSIONS

Variance measures the consequences of survey design and estimation.  Thus, it is appropriate for a
paper on variance estimation to offer a number of conclusions addressing these two related issues,
as well as variance estimation per se.  In most cases, further work is warranted to confirm or dispute
what we report here. 

We believe that the effect of sampling variance will be an important factor affecting public
acceptance of the 2000 census.  If the sampling variances are too high, then comparison of census
estimates with other sources of information, including the Census Bureau's postcensal estimates, will
undermine the acceptance of the 2000 results.  At higher levels of geography, we expect the effect
of ICM estimation will have the larger effect on the variance, whereas NRFU sampling and
estimation will be important at lower levels of geography.

One of the important findings from the census test is empirical support for combining unit sampling
for NRFU with block sampling for ICM.  This conclusion, combined with considerable evidence that
unit sampling will offer substantial variance advantages over block sampling, strongly favors the
future use of unit sampling.

Several previous methodological studies have been based on block sampling.  These were both
important and useful efforts.  Unit sampling, however, fundamentally changes everything.  Unit
sampling does not exclude these methodologies from further consideration, but it does require that
evaluation of the properties of each estimator previously based on block sampling be revisited.

Sections 2 and 3 documented the methodology we employed for site-level estimates from the 1995
test.  We do not see these methods as a blueprint for 2000.  In particular, part of the complexity of
the methodology arose from representing the joint use of ICM and NRFU samples for NRFU
estimation.  In the future, we agree with Zaslavsky's suggestion (1995) that we look for less complex
methods for 2000.  In fact, given the much larger size of the NRFU sample compared to the ICM
sample, we recommend that all followup interviews in ICM blocks be self-representing.  This move
would simplify the variance estimation enormously.  With the 2000 sample sizes, no other use of the
ICM data for NRFU estimation could possibly improve on this simple approach by more than a
trivial amount.  As suggested by the variance calculation in Oakland, weighting by unconditional
probabilities of selection may prove worse than making ICM blocks self-representing for NRFU
estimation, when unit sampling is used for NRFU.

The scope of variance estimates produced so far for the 1995 test falls short of requirements for
2000.  Indeed, we have not yet addressed the problem of variance estimates for lower levels of
geography for the block sample.  As much as it would be desirable to do so, we believe that it is
important to focus now on the probable design for 2000.



The results reported in Section 4 for variance estimation with nearest neighbor imputation are quite
promising, even though fine tuning and further assessment are required.  Potentially, this approach
opens up a wide variety of imputation strategies meriting further assessment as census estimators.
For example, the study reported in Section 4 used only proximity in the file to other nonresponding
addresses, but other strategies could be evaluated, such as considering characteristics of neighboring
responding units.

This experience suggests the possibility of employing some form of unit imputation for NRFU and
estimating entirely "bottom-up" for NRFU.  Much further work is required to evaluate this strategy
in comparison to alternatives but, if this strategy is selected, we observe that variance estimation will
become far simpler than under estimation strategies that first estimate NRFU aggregates and then
constrain an imputation procedure to these estimated aggregates.

A goal for 2000 would be to base variance estimation entirely on assigning each case replicate
weights.  Imputations made from NRFU would carry replicate weights based on refining the methods
described in Section 4.  Cases included in the file on the basis of ICM findings would have replicate
weights reflecting the effects of the ICM design and imputation.  Once the replicate weights have
been created, mass calculation of variances for census characteristics will become relatively easy.

Further work remains on how information on variance should be presented to the public.  For
example, variance generalization will almost surely have some role, certainly at the block level, but
research should examine the quality of the generalized variances and their interpretation.  For
example, empirical work is required in order to assess the performance of confidence intervals based
on generalized variances.

 This paper reports the general results of research undertaken by Census Bureau staff.  The views1

expressed are attributed to the authors and do not necessarily reflect those of the Census Bureau.  We
thank George Train for computational contributions and Mary Ann Cochran for editorial assistance.
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